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On the Fractal Dimension and Correlations 
in Percolation Theory 

A. Kapitulnik, 1'~ Y. Gefen, z and A. Aharony 3 

We discuss the fractal dimension of the infinite cluster at the percolation 
threshold. Using sealing theory and renormalization group we present an 
explicit expression for the two-point correlation function within percolation 
clusters. The fractaI dimension is given by direct integration of this function. 
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1. INTRODUCTION 

One of the most intensively studied random fractals is the percolating infinite 
cluster. (1-5'4) Its popularity came from the fact that indeed percolation was 
shown to be a model which well describes inhomogeneous physical systems 
such as metal-insulator thin films, (6) gels, ~7) or dilute magnetic systems. <8) 

Much of the current interest in such systems concentrates on the 
influence of the geometrical structure on the physical properties in the 
vicinity of the percolation threshold, pc. ~6-1~ As the concentration p 
approaches Pc, the pair connectedness length ~ diverges, ~ oc ( p -  pc) -v. It is 
generally believed that on large length scales, L ~> ~, the infinite cluster which 
appears for p > Pc is homogeneous, with site (or bond) density Poo oc 
( p - p c ) ~ o c  ~-~/~. This homogeneity is believed to disappear for shorter 
length scales, L < ft. For these scales, the infinite cluster is argued to be self- 
similar, with a typicalfractal dimensionality D. (1-7'11'12) The value of D was 
discussed extensively in the literature. <I-7'11'12'13) To define D, consider a 
point on the infinite cluster, and count the number M(L) of points on the 
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same cluster within a volume Z d (of linear size L in d dimensions) centered 
at that point. The last condition is essential if we want to fulfill the 
Hausdorf-Besikovitz ~3) definition of D. Self-similrity implies that t3'11'~2) 

M ( L )  ocL  ~ a < L  < ~  (1) 

where a is a typical microscopic length. 
For L >> r homogeneity implies that M ( L  ) ~ P ~ L  a oc ~-~/~ �9 L a. 

Assuming that ~ is the only relevant length in the problem, we may write 
M(L,  ~) in the scaling form ~11) 

M(L ,  ~)=~-~/V . La . m ( ~ f  ) (2) 

For L ~ ~, M should become independent of ~. Thus m ( x ) ~  x ~/~ and 
M ( L )  ~ L a ~/~, i.e., 

D = d -- fl/v (3) 

This result also follows from finite size scaling at pc, (5) and has been 
confirmed by independent measurements of D, fl, and v for two-dimensional 
percolation systems.(11) 

It is the aim of this paper to discuss these relations. In particular, 
Section 2 exhibits a general self-consistent calculation for M ( L ) ,  in the self- 
similar regime. This calculation yields the result 

D = (/3 + ~)/v (4) 

where ~ describes the divergence of the mean cluster size. For d < 6, the 
hyperscaling relation dv = 2fl + ? yields the equivalence of Eqs. (3) and (4). 
As we show in Section 3, this is no longer the case for d > 6, when only (4) 
is correct, yielding D -  4, nor at d = 6, when logarithmic corrections are 
found. 

The breakdown of hyperscaling results from the existence of a 
"dangerous irrelevant variable," and leads to a generalized scaling form 
replacing Eq. (2). These discussed in Section 4. 

2. SELF-CONSISTENT DERIVATION OF D 

Consider the conditional probability ps(r) that a site at a distance r 
from the origin belongs to a cluster of s sites, given that the origin belongs to 
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it. ~14) We can express the percolation connectedness correlation function, 

G(r), as an average over ps(r), 

G(r) = ~ snsps(r ) + Poopoo(r) - P2oo (5) 
s ~ l  

where sn, is the probabil i ty that  a site belongs to a finite cluster of  s sites. 
Let rs be the typical linear size of  a cluster of  s sites. We expect ps(r) to 

decay exponentially for r > r, .  We shall thus use the approximate  value 
p,(r) ~_ 0 for r > r , ,  and the sum in Eq. (5) will contain only sizes s < s~, 
where s r is the inverse function of r s. 

The function sns is known {2) to decay exponentially for s > sg. In the 
same spirit as above, we approximate  sn s by zero for s > s~. The sum in 
Eq. (5) thus contains only terms with r < r~ < ~. For  such length scales we 
expect all the clusters to have the same self-similar structure. Therefore, we 
write ps(r) = poo(r). 

Combining all these simplifying assumptions,  Eq. (5) now becomes ~14) 

poo(r) = [G(r) + P Sns + Poo (6) 
1 S r 

For r ~> ~ one expects G(r) to decay exponentially. The sum in the 
denominator  of  (6) is also vanishing, and we end up with po~(r) ~- Poo. This 
is the homogeneous regime. 

For r<~ ~, "s t rong"  self-similarity (z) implies that  sr oc r ' .  Using also 
2- -~  sn~ oc s 1-T (s <~ sg), ~2) the sum in the denominator  becomes of order s r oc 

r -D(~-2), which is expected to be large compared  to Poo. In the same range, 
we expect that G ( r ) ~  r-(a-2+")~> p 2 .  Thus, 

poo(r) ~ rZ-d-n+o(T 2), r ~ ~ (7) 

The "mass "  on the infinite cluster within a volume L a around the 
(occupied) origin is thus (L < ~) 

~L 

M(L ) = ) dar poo(r) oc L 2-r t+D(~-2)  (8) 

Compar i son  with Eq. (1) now yields 

2 - - q  y + f l  
D - -  3 - - r  v (9) 

where on the right-hand side we used (2) 7 ~- (3 - v)/a, a = 1/(7 + fl) and 7 = 
( 2 -  r/)v. This is our Eq. (4), derived without any hyperscaling relations. 
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In the following sections we summarize existing and new expressions for 
sn~ and for G(r), and use them to derive pod(r) and M(L)  explicitly. 

3. EXPLICIT RESULTS 

The explicit calculations of sn s and of G(r) are based on the mapping of 
the percolation problem on the limit q ~ 1 of the q-state Potts model. The 
Hamiltonian of this model is written c~5) 

i f  q = -- T (r~ + k2) ~ Qii(k) Qu( -k )  
i=1 

+ w f f  ~i" Qii(k) Q . ( k ' ) Q n ( - k - k " ) ,  (lO) 

with r 0 linear in ( P c - P ) .  The upper critical dimension of the model is 
du = @06) The renormalization group (RG) recursion relations are (17) 

dr 
d--/= (2 + rl)r + O(w) (11) 

dw 3) 
dl = - - 2 - - - 2  w + O(w 3) (12) 

where e = 6 - d, K 21 = 2 a-  1 7,~d/2 F(d/2) and 

rl = --48KdW 2 (13) 

For d < 6, w(1) flows to a fixed point, with (w*) 2 = O(e). One can then 
add an ordering "ghost" field h, derive an equation of state Q(h), (17) and 
Laplace-transform it to obtain sn s. Following Stephen, (18) this yields 

1 s_(3/2_E/14) exp( [tl2s ) 
sns = (48nwe) 1/2 48we 

[ 1 ( ltt 2, 1,21 
• 1 + -~ -e  \ 4 ~ w c  / J + O(e~)' d < 6 (14) 

where t = (Pc - P)/Pc and c is a constant. 
For d > 6 the behavior is characterized by the Gaussian fixed point, 

r* = w* = 0, in the vicinity of which one has 

r(l) = r(0)e zt, w(l) = w(O)e (3-d/z)t (15) 
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Repeating the same calculation we rederive the mean field result (18) 

1 S_3/2 ( ] / [ 2 s )  
sn s -  (48zcwc)l/z exp ---.48wc ' d > 6 (16) 

At d = 6 the flow to the Gaussian fixed point is slower, w(l) oc w(O)/~/l. 
This implies that t(l)= t(O)eZl/l 5/21, and introduces additional powers of l 
into various expressions. (1~) When t(1)=O(1) these l's are replaced by 
logarithmic factors, e.g., ln lt/t ol. Finally, the same calculation yields~19) 

sn, ocw 4/7 [ln s [t~ 3/2exp // ]tlEsj \ d = 6  (17) 
[ 48weJ \ 4 8 w c / '  

where t o is a constant. This result for sn s is reported here for the first time. 
We now turn to the calculation of G(r). The Fourier transform of G(r) 

has the scaling form ~2~ 

G(k, r, w) = exp [2/--  f l  ~I(l')dl'J G(elk, r(l), w(l)) (18) 

One may obtain G by iterating the RG recursion relations until t(l)+ 
e2tk2 = 1, and then using perturbation theory. (2x) 

At p = Pc, i.e., t = 0, we indeed confirm that 

G(k, 0, w) -1 ~: k 2-", d < 6 (19) 

with t /=  -~/21. 
For d > 6 one obtains the Gaussian result, 

G(k, 0, w) - - 1  = k 2, d > 6 (20) 

and at d = 6 one has the new result 

G(k, O, w)-  ' oc kE[ln(k/ko) ] -1/21 (21) 

Note that such logarithmic factors in 0 are expected whenever r/is of order 
c! 

We are now ready to combine sn s and G(r) to derive poo(r). For d < 6, 
at t =  0, Eq. (14) is clearly of the form sn s ocs x-', with r = 5 / 2 - e / 1 4 .  
Similarly, G(r) is the Fourier transform of Eq. (19), G(r) ocr -~d-~+") 
Substitution into Eq. (8) indeed confirms Eq. (1), with 

I0 
h = 4 -- 2--i- ~ + O(g2) (22) 

This also agrees with the hyperscaling result (3). 
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Table I. Results for p oo(r) and M(L) 

Self-similar regime Homogeneous regime 

d = 6 - e  d = 6  d > 6  d = 6 - e  d = 6  d > 6  

p~(r) r [2-(1,/21)c] w(lnr)-lo/21r-2 wr 4 d 

M ( L )  Z 4-0~ w( lnL)- l~  4 wL 4 

~-[2-(11/21)81 W-l~ 2(ln~)11/21 w-l~-2 

L"p| 

For d > 6, Eq. (15) shows that w(l) decays to zero as l ~  m.  However, 
w appears in denominators of various expressions, e.g., Eq. (16). One can 
therefore not set w - w * = 0 .  Such variables are called "dangerously 
irrelevant. ''(22) The calculation of Section 2 can still be repeated, if one 
substitutes s r ~: wXr D, M(L ) ~ wXL ~ sn s w. w-1/2s -3/2, G(r) w_ r -(a- 2). One 
then finds (14) x = 1 and D = 4 for all d > 6. Clearly, this agrees with Eq. (4) 
(with fl = 7 = 2v = 1), but not with the hyperscaling result (3). 

At d = 6  we substitute s r~zwx( lnr )  yr D, and identify x = l ,  
y = - 1 0 / 2 1 ,  d =  4. 

In the homogeneous regime, r >> {, we confirm explicitly that Poo = Poo. 
Our results are summarized in Table I. 

4. MODIFIED SCALING FOR d > 6 

For d > 6, we concluded that one should keep track of explicit depen- 
dences on w. Thus, Eq. (2) must now be replaced by 

M(L, ~, w) = P ~ L  arh ( ~ , ~3-d/2w) (23) 

where the form ~3--d/2w results from Eq. (15) (used until e I = ~). Substituting 
P~ oz 1/w ~2, this becomes 

= L d  ~ 
(24) 

The function rh depends singularly on its second variable: when L ~ ~, 
rh(x ,  y )  cx2 x 4 - d  y 2, yielding M ~ w Z  4 as required. 

One may interpret the additional variable in Eq. (24) as introducing a 
new length, L w = w 2/(d-6). This length may be associated with the size of 
"blobs" of bonds on the infinite cluster, (4) since w is associated with the 
probability of three-bond vertices. ~14) The behavior of M now depends on 
both L/~ and ~/L w. 
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For d < 6, the crossover from the homogeneous to the self-similar 
regime occurs at L ~ ~. For d > 6, the appearance of L w defines a series of 
crossover lengths, (14) 

L k = ( t d - 6 ~ 2 k )  1/(d-6+2k) (25) 

The two terms in the numerator of Eq. (6) become comparable at L 2, 
the two limiting behaviors of M(L) become comparable at L 1 and those of 
g(L) where g is the conductance at scale L ~14'19) become comparable at L 3. 
There probably exists a range of length scales, below ~, through which 
various physical quantities cross over from their self-similar to their 
homogeneous behavior. Clearly, all the physical properties scale according 
to our self-similar predictions (e.g., MocwL 4, gocL -2) for L < L l o c  
~2/(a-4), and according to the homogeneous ones for L > 4. It is not yet clear 
to us whether the range L 1 < L < ~ represents a third scaling regime, or 
whether there is a separate crossover for each property. One would also like 
to obtain a geometrical interpretation of the lengths L k. 

For d = 6, the two limiting expressions become comparable at 

L 0 ~ w~(ln ~)- , /z < ~ (26) 

In this case, the second argument in Eq. (23) is replaced by w/ln ~ (or by 
w/In L), and the simple scaling form (2) is again violated. 

NOTE A D D E D  IN P R O O F  

For d < 8, finite ( p - p c ) <  0, and sufficiently large n one expects a 
crossover from Eq. (16) to the distribution function of lattice animals [A. B. 
Harris and T. C. Lubensky, Phys. Rev. B 24:2656 (1981)]. This should not 
affect the scaling properties of averages of powers of n calculated with (16), 
nor our results at p =Pc .  We are grateful to A. B. Harris for discussions of 
this point. 
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